brendacepedam
?>

Проведены касательные к окружности AB, BD и DE так, что A, C и E — точки касания. Длина ломаной ABDE равна 94, 2 см. Определи длину отрезка DB.

Геометрия

Ответы

Беспалова
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
  
Полная площадь призмы равна сумме площадей двух оснований и   площади боковой поверхности.  
 Пусть ребро призмы равно а.   
 Грани - квадраты, их 3.   
 S бок=3а²   
S двух осн.=( 2 а²√3):4=( а²√3):2 
 По условию  
 3а²+(а²√3):2=8+16√3   
Умножим  обе стороны уравнения на 2 и вынесем а² за скобки:     а²(6+√3)=16+32√3)=16(1+2√3)    
  а²=16(1+2√3):(6+√3)   
Подставим значение  а² в формулу площади правильного треугольника:   
 S=[16*(1+2√3):(6+√3)]*√3:4  
 S=4(√3+6):(6+√3)=4 (ед. площади)
 
 Думаю, решение понятно.  Перенести решение на листок для Вас не составит труда.
lelikrom2202

Найдем S(AOB):

S(AOD):S(BOC) =16:9=k2

k=4/3

k=4/3=AO/OC

S(AOB)=0,5•BL•AO

S(BOC)=0,5•BL•OC

S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3

S(AOB)/S(BOC) =4/3

S(AOB)=4/3•S(BOC)=4/3•9=12

S(ABCD)=12+12+16+9=49

Объяснение:

Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.

S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)

S(AOD)≠S(BOC)

Следовательно, у этих треугольников AD и BC основания трапеции.

∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а

стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Проведены касательные к окружности AB, BD и DE так, что A, C и E — точки касания. Длина ломаной ABDE равна 94, 2 см. Определи длину отрезка DB.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

inbox466
kmr495270
АндреевичОльга641
market-line5260
olegtarasov1965
preida-2
sargisyan
Amulenkov
Олеся
happych551
dmitrymakarov003
makashi28
dimaaristov
smakejkina
zatoichi69