nusupova
?>

Постройте две окружности, расстояние между центрами которых равно разности двух радиусов. Постройте их радиусы. 2. Постройте две окружности, расстояние между центрами которых равно сумме двух радиусов. Постройте их радиусы.

Геометрия

Ответы

nsh25044

Рисунок во вложении, хотя можно вполне обойтись без него. 


1) Найдем вторую сторону основания параллелепипеда из формулы площади основания. Т.к. он прямоугольный, основание - прямоугольник.
S=a*8=40
а=S:8=40:8=5 см
2) Найдем высоту параллелепипеда из формулы объема.
V=S·h
h=V:S
h=240:40=6cм
Площадь боковой поверхности равна произведению высоты на периметр основания:
Sбок=h·2(a+b)
Sбок=6·2·(8+5)=156 см²
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и боковой поверхности:
Sполн= 2·Sосн +Sбок
Sполн=80+156=236 см²
Диагональ можно найти с теоремы Пифагора ( см. рисунок)
Для этого нужно сначала вычислить диагональ основания АС.
Диагональ АС1 параллелепипеда равна
АС1=√(АС²+С1С²)
Можно воспользоваться теоремой:
Квадрат диагонали параллепипеда равен сумме квадратов трех его линейных измерений.
АС1²=АВ²+ВС²+С1С²=8²+5²+6²=125
АС1=√125=5√5 см
-----------------------------------------
№2   

Объем прямоугольного параллелепипеда равен произведению высоты на площадь его основания или произведению трех его измерений. Что одно и то же. 
V=a·b·c
Об основании известно, что его периметр Р равен 40 см.
Р=2(а+b)
Ни а, ни b не известны, но их длину можно найти.
Пусть ширина основания а, тогда его длина ( по условию) а+4
40=2·(а+а+4)=2а+2а+8=4а+8
4а=40-8=32 см
а=8 см
b=8+4=12 см
Высоту найдем из площади боковой поверхности, которая равна произведению высоты на периметр основания:
Sбок=hP
h=Sбок:Р
h=400:40=10 см
V=a·b·c=8·12·10=960 см³


№1вычислите площадь боковой поверхности, площадь полной поверхности и длину диагонали прямоугольного
igorevich-alekseevna

Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.

По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)

Для большего треугольника R - радиус вписанной окружности. 

(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)

Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).

Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Постройте две окружности, расстояние между центрами которых равно разности двух радиусов. Постройте их радиусы. 2. Постройте две окружности, расстояние между центрами которых равно сумме двух радиусов. Постройте их радиусы.
Ваше имя (никнейм)*
Email*
Комментарий*