S = √3 ед².
Объяснение:
Пусть диагонали трапеции пересекаются в точке О.
В равнобедренном треугольнике ВОС угол ВОС = 120°, как смежный с углом АОВ, который равен 60° по условию. Тогда ∠ОСВ = 30°, как угол при основании равнобедренного треугольника. ∠CAD = 30°, как накрест лежащий с ∠ОСВ = 30° при параллельных прямых AD и ВС и секущей АС.
В прямоугольном треугольнике АСН катет СН лежит против угла 30 градусов => АС = 2·СН. АН = √3. Тогда по Пифагору
(2·СН)² - СН² = АН² или 3·СН² = 3. => СН = 1 ед.
Отрезок АН равен полусумме оснований (свойство высоты, опущенной на большее основание равнобедренной трапеции, которая делит это основание на два отрезка, больший из которых равен полусумме оснований). Итак, полусумма оснований равна √3 (дано). Тогда площадь трапеции равна произведению полусуммы оснований на высоту, то есть: √3·1 = √3 ед².
S = √3 ед².
Объяснение:
Пусть диагонали трапеции пересекаются в точке О.
В равнобедренном треугольнике ВОС угол ВОС = 120°, как смежный с углом АОВ, который равен 60° по условию. Тогда ∠ОСВ = 30°, как угол при основании равнобедренного треугольника. ∠CAD = 30°, как накрест лежащий с ∠ОСВ = 30° при параллельных прямых AD и ВС и секущей АС.
В прямоугольном треугольнике АСН катет СН лежит против угла 30 градусов => АС = 2·СН. АН = √3. Тогда по Пифагору
(2·СН)² - СН² = АН² или 3·СН² = 3. => СН = 1 ед.
Отрезок АН равен полусумме оснований (свойство высоты, опущенной на большее основание равнобедренной трапеции, которая делит это основание на два отрезка, больший из которых равен полусумме оснований). Итак, полусумма оснований равна √3 (дано). Тогда площадь трапеции равна произведению полусуммы оснований на высоту, то есть: √3·1 = √3 ед².
Поделитесь своими знаниями, ответьте на вопрос:
С ГЕОМЕТРИЕЙ В треугольнике АВС АС=ВС, угол С равен 148 градусов. Найдите внешний угол при вершине А. ответ дайте в градусах.
Объяснение:
ΔАВС-равнобедренный , т.к АС=ВС⇒∠А=∠В.
∠А+∠В=180°-∠С , ∠А+∠В=180°-148° , ∠А+∠В=32°, ∠А=∠В=32°:2=16°. Тогда внешний угол при вершине , по т. о смежных углах равен 180°-16°=164°