info2471
?>

Сумма катетов прямоугольного треугольника равна 16 см. Найди длины катетов этого треугольника, при которых площадь треугольника будет наибольшей. Катеты треугольника должны быть равны __см и __см (Пиши длины сторон в возрастающей последовательности Максимальная площадь равна_см².

Геометрия

Ответы

lovel24

8 и 8 см; 32см2

Объяснение:

представляем себе 2 идентичных прямоугольных треугольника, то есть, четырехугольник. мы знаем, что s четерехугольника это s=a*b

Методом подбора узнаем, что наибольшая площадь достигается при значениях 8 и 8 см ( при условии, что их сумма равна 16)

Тогда s = 64

Но это площадь 2 одинаковых треугольников

64/2=32

notka19746
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².

2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.

1) основание прямой призмы – прямоугольный треугольник с гипотенузой 5см и катетом 12см. найдите пло
1) основание прямой призмы – прямоугольный треугольник с гипотенузой 5см и катетом 12см. найдите пло
Litvin_Ivanov

DOA = 70°.   Дано в задаче.

BOC = DOA = 70°.  Вертикальные углы равны (1).

DOC = 180° - 70° - 110°.    Смежные углы в сумме дают 180° (2).

AOB = DOC = 110°.    (1).

ODC = (180° - 110°) / 2 = 35°.   Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).

ADO = 90° - 35° = 55°.     Два угла составляют прямой угол (5).

OAD = ADO = 55°.      (4).

OAB = 90° - 55° = 35°.       (5).

OBA = OAB = 35°.     (4).

OBC = 90° - 35° = 55°.      (5).

OCB = OBC = 55°.        (4).

Все остальные углы состоят из других и их можно посчитать по сумме. Например:

DAB = DAO + BAO = 55° + 35° = 90°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сумма катетов прямоугольного треугольника равна 16 см. Найди длины катетов этого треугольника, при которых площадь треугольника будет наибольшей. Катеты треугольника должны быть равны __см и __см (Пиши длины сторон в возрастающей последовательности Максимальная площадь равна_см².
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Tarapovskaya
Владислава531
Васильевий
Валентинович133
chapaevval
pwd10123869
mihalevskayat
Chutaeva381
irnik65
Диана-Николаевна377
Стадник620
yanagitsina
pimenov5
Dmitrievich1871
ольга1801