Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат
Поделитесь своими знаниями, ответьте на вопрос:
Отрезок РК не пересекает плоскость, точка Д - его середина. через точки Р, К, Д проведены параллельные прямые, пересекающие плоскость в точках Р1, К1, Д1 соответственно. найдите ДД1, если РР1 = 14 см, а КК1 = 12 см?
Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х.
Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см².
Высота ВН разделила ΔАВD на два треугольника с одной высотой h.
Определим площадь каждого из этих треугольников.
S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh.
S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh
Сумма площадей этих треугольников равна площади ΔАВD=30 см².
1,5хh+хh=30,
2,5хh=30,
h=30/2,5х=12/х.
Вычислим площадь ΔАВМ.
S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см².
ответ: 18 см².