MO=ON(Т.К. РАДИУСЫ)
Доказываем равенство треугольников по свойству касательных из одной точки,
Тогда угол KON=MOK и они по 60 градусов. 120/2=60 градусов.
Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов, т.е.
2ON=OK
2ON=12 /2(ДЕЛИЛИ ОБЕ ЧАСТИ)
ON=6
Затем находим всё по теореме Пифагора.
KN+ON=OK(все величины в квадрате)
KN2+36=144
KN2=144-36=108 градусов.
корень из KN=корень из 108 радусов и это 6 корней из 3.
KN=KM(по свойству отрезков касательных)
ответ:KN=KM=6 корней из 3.
Поделитесь своими знаниями, ответьте на вопрос:
1. Из точки вне плоскости провели к ней перпендикуляр и две наклонные. Длина одной 16. Угол между этой наклонной и плоскостью 30°. Определить длину второй наклонной, если угол между данной наклонной и перпендикуляром 45°.
первая наклонная образует прямоугольный треугольник ΔАВО,
где ∠О = 90°;
∠АВО = 30°
гипотенуза АВ = 16 см;
вторая наклонная образует прямоугольный треугольник ΔАОС с гипотенузой АС;
∠ОАС = 45°.
Катет АО (перпендикуляр) у данных треугольников общий.
1) Так как катет АО находится напротив угла 30°, он равен половине гипотенузы:
АО = 16:2 = 8 (см);
2) ΔАОС - равнобедренный, так как ∠ОАС = ∠АСО = 45°,
тогда АО = ОС.
3) Вторая наклонная - гипотенуза ΔАОС, АС - гипотенуза
по теореме Пифагора
АС² = АО²+ОС²= 8²+8²=64+64=128
АС = √128 = 8√2 (см)
ответ: 8√2 см.