Периметр равнобедренного треугольника ABC с основанием BC равен 28, 3 см, а периметр равностороннего треугольника BCD равен 27, 9 см. Найдите сторону AB.
Если АМ=ВL=СР=DQ, расположенные на сторонам квадрата, то будут равны и отрезки МВ=LC=DP=AQ соответственно.Так как у квадрата стороны имеют прямые углы, то мы имеем 4 прямоугольных треугольника с попарно равными катетами, соответственно.Отсюда эти 4треугольника равны по 2 катетам.Значит и гипотенузы этого треугольника ML=LP=PQ=QM. Углы каждого треугольника дают нам при основании гипотенузы сумму 90* ;Поэтому углыM,L,P и Q каждый равен 90*; Следовательно имея равные стороны и прямые углы, данная фигура-КВАДРАТ!
suhanowaswetlana
04.11.2021
Предположим, что равносторонний Δ АВО уже существует. Достроим его до квадрата ABCD, одна из сторон которого АВ совпадает с одной из сторон Δ АВО. Таким образом мы получим три равнобедренных треугольника: Δ СОD (острые углы которого нам якобы неизвестны) и 2 одинаковых равнобедренных треугольника со сторонами ВО и АО и острым ∠30 °(являющимся частью ∠=90° квадрата, минус ∠=60° Δ-ка АВО). И если мы опустим высоту в Δ ОВС на сторону ОС, мы разделим Δ ОВС на 2 ∠ по 15° (и получим точку Р на стороне ОС - cм рисунок). ДЛЯ УГЛОВ С ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫМИ СТОРОНАМИ СПРАВЕДЛИВО УТВЕРЖДЕНИЕ: ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫЕ УГЛЫ РАВНЫ ИЛИ В СУММЕ СОСТАВЛЯЮТ 180°, А ЕСЛИ ЭТИ взаимно перпендикулярные УГЛЫ ОЧЕВИДНО ОСТРЫЕ - ТАКИЕ УГЛЫ безоговорочно РАВНЫ. Угол РВС взаимно ⊥ углу ОСD, так как BC ⊥ СD как стороны, образующие ∠BCD квадрата, а ВР ⊥ ОС как высота треугольника ОВС. Взаимно перпендикулярные острые углы равны, значит ∠ ОСD =15°, как и ∠ РВС, являющийся половиной ∠ ОВС=30°. Очевидно, что любое изменение размеров ∠∠ ОСD и ОDC приведёт к тому, что Δ АВО перестанет быть равносторонним. Следовательно Δ АОВ является равносторонним только если ∠∠ ОСD и ODC равны 15 °,
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр равнобедренного треугольника ABC с основанием BC равен 28, 3 см, а периметр равностороннего треугольника BCD равен 27, 9 см. Найдите сторону AB.
9,5 см
Объяснение: