kononenko-elena4
?>

Вычисли угол RNK и радиус окружности, если MN= 126, а ∢RNO=30°.

Геометрия

Ответы

sahar81305

в условии ошибка, нужно так:

  m не делится на n и имеет от  деления на n тот же остаток

 

решение:

a,b - натуральные числа (целые части от деления)

r -остаток от деления

m=na+r

m+n=(m-n)b+r

m+n-r=(m-n)b

n+m-r делится на n и m-nесли m< =2n, тоn< n+m-r< 3n, следовательно оно равно 2nтогда m-n=r и при делении на него не может быть остатка r.значит m> 2nтогда n+m-r< 3(m-n), т.к. 4n< 2mзначит n+m-r=2(m-n), т.к. m-n на n по условию не делится.отсюда m=3n-r, m+n-r=4n-2r делится на n, отсюда r=n/2.значит m=5k, n=2k

m: n=5: 2

Aleks0091
По теореме, если у пирамиды равные двугранные углы при основании, тогда в многоугольник основания можно вписать окружность. В постановке задачи - доказать, что точка О - точка пересечения диагоналей, центр вписанной окружности - следовательно в основе лежит четырехугольник.Так как в четырехугольник можно вписать окружность, то это может быть одна из следующих фигур:
1. Квадрат
2. Ромб
3. Четырехугольник, у которого сумма одних противоположных сторон равна сумме других противоположных сторон.Рассмотрим каждый случай.
1. В основе квадрат - если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая и является центром вписанной окружности - у квадрата диагонали являются и биссектрисами его углов, и как известно, диагонали пересекаются в одной точке. Доказано.
2. В основании ромб - диагонали ромба являются и биссектрисами его углов, и пересекаются в одной точке, которая и будет центром вписаной окружности. Доказано.
3. Четырехугольник - произвольный, но в него можно вписать окружность. Биссектрисы такого четырехугольника не будут совпадать с диагоналями, следовательно точка пересечения диагоналей и его центр вписанной окружности - разные точки. Этот случай нам не подходит.

Доказано, что если у пирамиды боковые грани наклонены к плоскости основания под одним углом, то точка пересечения диагоналей четырехугольника будет центром вписанной окружности.
Докажите, что у пирамиды боковые грани которой наклонены к плоскости основания под одним углом, точк

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычисли угол RNK и радиус окружности, если MN= 126, а ∢RNO=30°.
Ваше имя (никнейм)*
Email*
Комментарий*