Поскольку прямой угол не указан, задача может иметь два варианта решения.
1)
Угол С=90°
Тогда т.D принадлежит катету АС, так как лежать на АВ не может - не получится угла АDВ=120°
Угол АDВ внешний для ∆ СDВ и равен сумме, не смежных с ним
∠DСВ и ∠DВС (свойство внешнего угла).
В прямоугольном ∆ ВDС угол DВС= 120°-90°=30°
Тогда ВС=DC:tg30•=6√3
∆ АВD - равнобедренный. Его острые углы (180°-120°):2=30°
BC противолежит углу А=30°, поэтому АВ=2•ВС=12√3
2)
Угол А=90°
Тогда в равнобедренном ∆ ВDА острые углы равны 30°. ⇒
угол С=60°
АВ=АС•tg60°=6√3
3)
Угол В=90° Решение аналогично предыдущему и АВ=6√3
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник, описанный около окружности, центральные углы 1 2 Список заданий 00:29:40 Условие задания:3 Б. В треугольник вписана окружность. Вычисли неизвестные углы, если ∢ OMN = 28° и ∢ ONL = 32°. ∢ COA = ? ∢ AOB = ? ∢ BOC = ?
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.