Тема: "окружающая среда"
* * * для удобства плоскость (ABCD) обозначаем через Ψ * * *
EABCD - пирамида , основание которой трапеция ABCD ;
AD || BC ; AB =28 ; ∠A =∠B =90° ; ∠D =30° ; | [AB] < [CD] ; [BC] < [AD]
(ABE) ⊥ Ψ и (CBE) ⊥ Ψ ; ∠ ( (CDE) , Ψ ) =∠ ( (ADE) , Ψ ) = 60°
--------------------------
1. Трапеция ABCD ПРЯМОУГОЛЬНАЯ
- - -
(ABE) ⊥ Ψ и (CBE) ⊥ Ψ ⇒ EB ⊥ Ψ
DA⊥ BA ⇒DA ⊥ EA ; ∠EAB =60° линейный угол двугранного угла
EADC ; Построим линейный угол двугранного угла EDCA
Проведем BF ⊥ CD и основание F этого перпендикуляра соединим с вершиной ПИРАМИДЫ E. Получаем ∠EFB = 60° линейный угол двугранного угла EDCA .
* * * ! ΔABE = ΔFBE =Δ BFC = ΔCHD учитывая ∠D =∠BCF =30° * * *
Вычисление площадей боковых граней и т.д. cм приложение
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Поделитесь своими знаниями, ответьте на вопрос:
Трапеция ABCD вписана в окружность, причем eё основание AD является диаметром этой окружности, а хорда ВС стягивает дугу в 60°. Найдите площадь трапеции, если радиус окружности равен R
ответ: 0,75R²√3
Объяснение:
Ад- диаметр ⇒АД=2R, ∪ВС=60° ⇒ВС- сторона правильного шестиугольника и ВС=R ⇒ΔВОС -равносторонний и ∠ОВС=∠ОСВ=60°.
ВС║АД ⇒∠ВОА=∠ОВС=60° и ∠СОД=∠ОСВ=60°.
ΔАОВ=ΔВОС=ΔСОД по 1 признаку равенства треугольников.
S АВСД= 3* S ΔВОС=3* (R²√3):4=3R²√3 :4=0,75R²√3.