Поделитесь своими знаниями, ответьте на вопрос:
Дан квадрат PLRD . 1. Выполни параллельный перенос квадрата на вектор LD−→− . 2. Каким образом ещё можно получить тот же результат? А)Симметрией относительно прямой, на которой лежит данный вектор Б)Поворотом на 180 градусов вокруг конечной точки данного вектора В)Поворотом на 180 градусов вокруг начальной точки данного вектора Г)Выполненный параллельный перенос на данный вектор — единственное возможное движение Д)Симметрией относительно конечной точки данного вектора Е)Поворотом на −180 градусов вокруг конечной точки данного вектора З)Параллельным переносом на противоположный вектор
Если сторона равна 4, то площадь
S(осн) = 6*a^2*√3/4 = 6*16*√3/4 = 24√3
Высота (она же медиана и биссектриса) одного треугольника h = a*√3/2 = 2√3
Эта высота h - один катет прямоугольного треугольника,
высота самой пирамиды H - второй катет, а апофема L - гипотенуза
L^2 = h^2 + H^2 = 4*3 + 2^2 = 12 + 4 = 16, L = 4, как и сказано в условии.
Это можно узнать и самому.
Площадь боковой поверхности
S(бок) = 6*a*L/2 = 3*4*4 = 48.
Площадь полной поверхности
S = S(осн) + S(бок) = 48 + 24√3
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*24√3*2 = 48/3*√3
2) Опять тоже самое. У правильной 4-угольной пирамиды в основании лежит квадрат.
И опять же, апофему можно вычислить, зная сторону основания и высоту.
S(осн) = 8^2 = 64
S(бок) = 4*a*L/2 = 2*8*5 = 80
Площадь полной поверхности
S = S(осн) + S(бок) = 64 + 80 = 144
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*64*3 = 64
3) Если площадь основания (квадрата) равна 36, то сторона а = 6
И опять же, апофему можно вычислить, зная сторону основания и высоту.
S(бок) = 4*a*L/2 = 2*6*6 = 72
Площадь полной поверхности
S = S(осн) + S(бок) = 36 + 72 = 108
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*36*3√3 = 36√3