Усеченый конус АВСД, О -центр нижнего основания, О1 центр верхнего основания, АО=ВО=радиус нижнего основания=корень(площадь/пи)=корень(пи/пи)=1, АВ-диаметр нижнего основания=2*1=2, ВС-диаметр верхнего основания, ВО1=СО1=радиус верхнего основания=корень(площадь/пи)=корень(16пи/пи)=4, ВС=2*4=8, АВ=СД=5-образующая, сечение-равнобокая трапеция АВСД, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, ВН=СК, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК прямоугольник ВС=НК=2, АН=КД=(АД-НК)/2=(8-2)/2=3, треугольник АВН прямоугольный, ВН -высота трапеции=корень(АВ в квадрате-АН в квадрате)=корень((25-9)=4, площадь АВСД (сечения)=(АД+ВС)*ВН/2=(2+8)*4/2=20
koxhulya61
10.10.2021
Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.