dushechkin2
?>

Дана окружность с центром O и её диаметры AB и CD. Определи периметр треугольника AOD, если CB = 18 см, AB = 74 см. Назови треугольник, равный треугольнику AOD = (Введи с латинской раскладки!) 3. PAOD= см.

Геометрия

Ответы

kriapex
1. Нарисуйте чертеж.
2. Угол между биссектрисой и высотой обозначьте за X.
3. Угол между высотой и ближней к ней стороной Δ - за Y.
4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет =  X+Y.
5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ.
6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X.
7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).
Pavel1545

Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".

Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.

По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.

Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.

Высота С1Н из прямого угла по ее свойству равна:

С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.

Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.

α = arcsin0,2823 ≈ 16,4°.


Впрямоугольном параллелепипеде abcda1b1c1d1 найдите угол между плоскостью a1bc и прямой bc1, если aa

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дана окружность с центром O и её диаметры AB и CD. Определи периметр треугольника AOD, если CB = 18 см, AB = 74 см. Назови треугольник, равный треугольнику AOD = (Введи с латинской раскладки!) 3. PAOD= см.
Ваше имя (никнейм)*
Email*
Комментарий*