АГ = 26 см
БВ = 10 см
Боковая сторона АБ по условию перпендикулярна диагонали БГ
Е - середина стороны АГ
АЕ = АГ/2 = 13 см
ЖЕ = БЗ = БВ/2 = 5 см
АЖ = АЕ - АЖ = 13 - 5 = 8 см
ГЖ = АГ - АЖ = 26 - 8 = 18 см
---
по т. Пифагора для ΔАБГ
АГ² = АБ² + БГ²
26² = АБ² + БГ²
---
по т. Пифагора для ΔАБЖ
АБ² = АЖ² + БЖ²
АБ² = 8² + БЖ²
---
по т. Пифагора для ΔЖБГ
БГ² = ЖБ² + ЖГ²
БГ² = ЖБ² + 18²
---
26² = АБ² + БГ²
АБ² = 8² + БЖ²
БГ² = ЖБ² + 18²
Сложим все три уравнения
26² + АБ² + БГ² = АБ² + БГ² + 8² + БЖ² + ЖБ² + 18²
26² = 8² + 2*БЖ² + 18²
2*БЖ² = 26² - 8² + 18² = 676 - 64 - 324 = 288
БЖ² = 144
БЖ = 12 см, это высота трапеции
---
Площадь
П = 1/2(АГ + БВ)*БЖ = 1/2*(26 + 10)*12 = 36*6 = 216 см²
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь закрашенной фигуры
Объяснение:
1) Все грани куба являются квадратами.
По свойствам квадрата диагонали взаимно перпендикулярны. В нашем случае АС ⟂ BD.
2) DD1 ⟂ DC по условию и DD1 ⟂ DA, DC ⋂ DA = D, тогда по признаку перпендикулярности прямой и плоскости DD1 ⟂ (ABC).
3) Так как DD1 ⟂ (ABC) , то она перпендикулярна любой прямой, лежащей в этой плоскости, в том числе DD1 ⟂ AC.
4) Получили, что
АС ⟂ BD, AC ⟂ DD1, BD ⋂ DD1 = D, тогда по признаку перпендикулярности прямой и плоскости АС ⟂ (ВВ1D1), что и требовалось доказать.