Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
АлександрАлина
24.07.2022
ВС║α, плоскость трапеции проходит через ВС и пересекает α по прямой EF, значит EF║BC.
CF : FD = BE : EA = 2 : 3 по теореме Фалеса
Проведем диагональ BD, О - точка пересечения диагонали и EF. ΔЕВО подобен ΔABD по двум углам (угол В общий, ∠ВЕО = ∠ВАD как соответственные при пересечении параллельных прямых EF и AD секущей АВ), ЕО : AD= BE : BA = 2 : 5 EO = AD · 2 / 5 = 7 · 2 / 5 = 14/5 = 2,8 см
ΔDOF подобен ΔDBC по двум углам (угол D общий, ∠DOF = ∠DBC как соответственные при пересечении параллельных прямых EF и ВС секущей BD) OF : BC = DF : DC = 3 : 5 OF = BC · 3 / 5 = 4 · 3 / 5 = 12/5 = 2,4 см EF = EO + OF = 2,8 + 2,4 = 5,2 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
ОЧЕНЬ ОЧЕНЬ НАДО! Знайдіть периметр многокутника, який утворився внаслідок гомотетії з коєфіціентом 3 квадрата, сторона якого дорівнює 6
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.