Определите косинус угла между треугольником A B1C и плоскостью основания куба ABCDA1B1C1D1 со стороной 1.
Объяснение:
Нужно найти двугранный угол В₁АСВ.
В кубе все грани квадраты. Диагональ квадрата равна √(1²+1²)=√2 , половина диагонали 0,5√2. Пусть О-точка пересечения диагоналей основания.
Диагонали квадрата взаимно перпендикулярны , значит ОВ⊥АС. Тк. проекция ОВ⊥АС ,прямой лежащей в плоскости , то и наклонная В₁О⊥АС. Поэтому ∠В₁ОВ-линейный угол двугранного В₁АСВ.
ΔВВ₁О- прямоугольный , tg∠В₁ОВ= , tg∠В₁ОВ= =√2.
1+tg²∠В₁ОВ= , 1+√2²= ,cos∠B₁OB= , cos∠B₁OB=
Поделитесь своими знаниями, ответьте на вопрос:
решить геометрию В прямой угол вписана окружность радиуса 4см. Найдите периметр фигуры, ограниченной сторонами угла и меньшей дугой окружности, заключенной между точками касания.
Дано:
ABCDE - выпуклый пятиугольник.
∠A : ∠В : ∠С : ∠D : ∠E = 4 : 4 : 2 : 3 : 2.
Найти:
∠A, ∠В, ∠С, ∠D, ∠E = ?
Сумма углов выпуклого n-угольника вычисляется по формуле -
Где n - количество сторон.
Сумма углов выпуклого пятиугольника равна -
Если отношение углов ∠A : ∠В : ∠С : ∠D : ∠E = 4 : 4 : 2 : 3 : 2, то пусть каждый из них равен 4x, 4x, 2x ,3x, 2x соответственно.
4x+4x+2x+3x+2x = 540°
15x = 540°
x = 36°.
∠A = 4x = 4*36° = 144°
∠B = 4x = 4*36° = 144°
∠C = 2x = 2*36° = 72°
∠D = 3x = 3*36° = 108°
∠E = 2x = 2*36° = 72°.
ответ: 144°, 144°, 72°, 108°, 72°.