Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4
diannaevaaa
10.12.2022
Рисунок к задаче простой, каждый сумеет нарисовать прямоугольный треугольник. Нарисуем треугольник АВС, проведем высоту СН. Обратим внимание на то, что в треугольнике АВС, так как СН перпендикулярно АВ, косинус А можно выразить не только, как АС:АВ, но и АН:АС Тогда из соs A=√51):10 получим отношение АН:АС=√51):10 Произведение крайних членов пропорции равно произведению ее средних членов: 10 АН=12√51 АН=12√51):10 По т.Пифагора из треугольника АСН СН²=АС²-АН² СН²=144 -144·51:100 Приведем к общему знаменателю: СН²=(144·100 -144·51):100 СН²=144(100-51):100 СН²=144·49:100 СН=12·7:10=84:10=8,4
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
26) Прямоугольный параллелепипед описан около сферы радиуса 3. Найдите его объем.
4 см
Объяснение:
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4