1) рассмотрим треугольник с углом 45 градусом и с одной стороной (высотой) 3,5 см.
Т к он навнобедренный(1 угод 90, а два остльных по 45) то часть, которая приходится на основание равно тоже 3,5 см. Наналогично с другой стороны трапеции. То есть в центре образуется квадрат.
Так как часть основания равно 3,5+3,5 и равна 7 см, то из 17 вычетаем 7 и получается что на 2 стороны квадрата приходится 10 см следовательно 10 делим на два получаем что верхняя сторона равня 5, а нижняя равна 5+7 и равна 12 см.
isaev
09.06.2021
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
1) рассмотрим треугольник с углом 45 градусом и с одной стороной (высотой) 3,5 см.
Т к он навнобедренный(1 угод 90, а два остльных по 45) то часть, которая приходится на основание равно тоже 3,5 см. Наналогично с другой стороны трапеции. То есть в центре образуется квадрат.
Так как часть основания равно 3,5+3,5 и равна 7 см, то из 17 вычетаем 7 и получается что на 2 стороны квадрата приходится 10 см следовательно 10 делим на два получаем что верхняя сторона равня 5, а нижняя равна 5+7 и равна 12 см.