1. По теореме синусов:
a : sinA = b : sinB
sinB = b · sinA / a
sinB = 7 · sin60° / 10 = 7√3/20 ≈ 0,6062
∠B ≈ 37°
∠C = 180° - ∠A - ∠B ≈ 180° - 60° - 37° ≈ 83°
По теореме синусов:
a : sinA = c : sinC
c = a · sinC / sinA
c ≈ 10 · 0,9925 / 0,866 ≈ 11,5
2.
По теореме косинусов:
b² = a² + c² - 2ac·cosB
cosB = (a² + c² - b²) / (2ac)
cosB = (36 + 23,04 - 53,29) / 57,6
cosB ≈ 0,0998
∠B ≈ 83°
По теореме косинусов:
a² = b² + c² - 2bc·cosA
cosA = (b² + c² - a²) / (2bc)
cosA = (53,29 + 23,04 - 36) / 70,08
cosA ≈ 0,5755
∠A ≈ 54°
∠C = 180° - ∠B - ∠A ≈ 180° - 83° - 54° ≈ 43°
Объяснение:
Удачи)))
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике АВС известны длины сторон АВ = 30, АС = 100, точка О — центр окружности, описанной около треугольника АВС. Прямая ВХ, перпендикулярная прямой АО, пересекает сторону АO в точке Х. Найдите СХ
Можна розв'язувати двома : виконати побудову, або скористатись формулами радіусів. З побудовою швидше.
Отже, якщо побудувати сторону і кола та провести радіуси, отримаємо прямокутний трикутник з гіпотенузою 6 коренів з 3 і катетом 9 у якому прилеглий кут є половиною центрального кута даного многокутника .
Косинус цього кута дорівнює 9 поділити на 6 корінь 3, тобто корінь 3 на 2. Це кут 30 градусів, а отже центральний кут 30 *2= 60 гр.
Многокутник правильний отже його центральний кут дорівнює 360 гр. поділити на кількість сторін. Ділимо 360 на 60 , маємо 6 ( сторін).
Объяснение: