bellenru
?>

4. Через точку А, лежащую на окружности с центром О, проведены касательная АВ и хорда АС. Угол между отрезками ОА и ОС равен 110°. Найдите угол между хордой АС и касательной АВ. 5. Через концы хорды АВ проведены две касательные к окружности, пересекающиеся в точке С. Угол между радиусом ОВ и хордой АВ равен 32°. Найдите угол между касательными АС и ВС. 6. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 см, ∠BAC = 120°. 7. Через точку А удалённую от центра окружности на 8см проведена касательная АВ к этой окружности. Найдите длину отрезка касательной, если радиус окружности равен 6см. 8. Прямая АВ касается окружности с центром О и радиуса 5 см в точке В. Найдите расстояние от центра окружности до точки А и длину отрезка касательной, если угол АОВ равен 45°.

Геометрия

Ответы

Диана-Николаевна377
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.

Площадь боковой поверхности конуса в два раза больше площади основания. найдите угол между образующе
morozmd
Осевое сечение - это сечение геометрической фигуры, плоскость которой  проходит через ось данной фигуры. Сечение конуса, которое проходит через его ось - равнобедренный треугольник, потому как образующие образуют боковые стороны этого треугольника. Имеем равнобедренный треугольник ABC: AB = BC = 2*sqrt(3). CO - высота конуса, которая является и медианой, и биссектрисой в равнобедренном треугольнике, опущенная на основу. Следовательно, угол BCO = углу ACO = 60 градусов. Из прямоугольного треугольника BOC: угол CBO = 90 - 60 = 30 градусов. Катет, который лежит против угла 30 градусов, равен половине гипотенузы: OB = CB/2, OB = sqrt(3) = R. Найдем высоту конуса. Из теоремы Пифагора: CO^2 = CB^2 - OB^2, CO^2 = 12 - 3 = 9, CO = 3 см = H. Площадь основания конуса - это площадь окружности: S = pi*R^2, S =  3*pi см^2.
Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.

Длина образующей конуса равна 2 sqrt ( корень квадратный ) 3 , а угол при вершине осевого сечения ко

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

4. Через точку А, лежащую на окружности с центром О, проведены касательная АВ и хорда АС. Угол между отрезками ОА и ОС равен 110°. Найдите угол между хордой АС и касательной АВ. 5. Через концы хорды АВ проведены две касательные к окружности, пересекающиеся в точке С. Угол между радиусом ОВ и хордой АВ равен 32°. Найдите угол между касательными АС и ВС. 6. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 см, ∠BAC = 120°. 7. Через точку А удалённую от центра окружности на 8см проведена касательная АВ к этой окружности. Найдите длину отрезка касательной, если радиус окружности равен 6см. 8. Прямая АВ касается окружности с центром О и радиуса 5 см в точке В. Найдите расстояние от центра окружности до точки А и длину отрезка касательной, если угол АОВ равен 45°.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

info8
vera2job7
idalbaev
egorsalnikov1997139
evageniy79
gav973
doorhan42n6868
ddavydov1116
Голубева1440
jakushkinn
milanparipovic864
anadtacia03108988
veraplucnika
agutty3
Сергеевна-С.А.1549