Shishkinna2002
?>

Площадь прямоугольника, одна из сторон которого на 3 см больше другой, равна 54 см2. Найдите стороны и перимет прямоугольника ​

Геометрия

Ответы

anikamalish
Диагональ многоугольника - отрезок, который соединяет его  две не смежные вершины. 
Каждую вершину многоугольника можно соединить диагональю со всеми остальными. кроме соседних и себя самой. 
Получается, что из каждой вершины можно провести  на три диагонали меньше, чем  в многоугольнике углов.
Значит, из каждой вершины n-угольника можно провести  n*(n-3) диагонали. Но второй конец диагонали принадлежит и другой вершине, и диагональ посчитана дважды/
Поэтому формула для вычисления количества диагоналей многоугольника 
d=n*(n-3):2
Для данного многоугольника 
d= 2016*(2016-3):2= 2029104
andreyshulgin835
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.
В нашем случае искомый угол - это угол между высотой СН треугольника (плоскости) АВС и высотой DH треугольника (плоскости) DAB.
Поместим начало координат в точку D(0;0;0). Тогда имеем точки:
А(0;а;0), В(0;0;а), С(а;0;0).
Найдем координаты точки Н, как середины отрезка АВ:
Н(0;а/2;а/2).
Тогда вектор DH{0;а/2;а/2}, его модуль |DH|=√(2a²/4)=a√2/2,
вектор СН{-a;a/2;a/2}, его модуль |HC|=√(6a²/4)=a√6/2.
Cosα=(x1*x2+y1*y2+z1*z2)/(|DH|*|HC|) или
Cosα=(0+а²/4+а²/4)/(а²√12/4)=(2а²*4)/(4*а²√12)=2/√12=√3/3.
ответ: Искомый угол равен α=arccos√3/3 или α≈54,74°.

объясните! в пирамиде dabc ребра da,db и dc взаимно перпендикулярны и равны a. используя векторы, на

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площадь прямоугольника, одна из сторон которого на 3 см больше другой, равна 54 см2. Найдите стороны и перимет прямоугольника ​
Ваше имя (никнейм)*
Email*
Комментарий*