a) 1) Найдем координаты точки О. Для этого надо решить систему y=x+4 и y=-2x+1. Вычтем из первого уравнения второе, получим: 0=3x+3, x=-1 Подставим в первое y=-1+4=3. Итак, координаты центра О(-1; 3). 2) Найдем длину радиуса, используя координаты точки В, по формуле R^2=(2+1)^2 + (-1-3)^2 =9+16=25; 3) Запишем уравнение окружности
(x+1)^2 +(y-3)^2=25
б) У точек пересечения окружности с осью ОХ ординаты равны 0, поэтому подставим у=0 в уравнение окружности: (х+1)^2+9=25, x+1=+-4. Координаты этих точек (-4; 0) и (4; 0)
baumanec199613
19.06.2021
Проводим прямую. Отмечаем точку А - одну из вершин нашего треугольника на прямой, отмечаем отрезок, равный периметру треугольника - находим т. К, откладываем заданный угол с вершиной в т. А. Из т. А проводим перпендикуляр к первой проведенной прямой. Откладываем на нем отрезок, равный высоте - находим т. Я. От нее откладываем перпендикуляр к последней прямой, находим его пересечение с другой стороной угла. Нашли точку В. От точки К откладываем отрезок, равный АВ; находим точку С. Соединяем В и С. ABC -искомый треугольник.
a) 1) Найдем координаты точки О. Для этого надо решить систему y=x+4 и y=-2x+1. Вычтем из первого уравнения второе, получим: 0=3x+3, x=-1 Подставим в первое y=-1+4=3. Итак, координаты центра О(-1; 3). 2) Найдем длину радиуса, используя координаты точки В, по формуле R^2=(2+1)^2 + (-1-3)^2 =9+16=25; 3) Запишем уравнение окружности
(x+1)^2 +(y-3)^2=25
б) У точек пересечения окружности с осью ОХ ординаты равны 0, поэтому подставим у=0 в уравнение окружности: (х+1)^2+9=25, x+1=+-4. Координаты этих точек (-4; 0) и (4; 0)