О точка перетину діагоналей ромба АВ СД При паралельному перенесенні точка А відображаєтся на точку О точка с на С1 Знайдіть АС якщо АС дорівнює 5 см см
Длину стороны ромба обозначаем через a : AB =AD =BC =CD =a; точка пересечения диагоналей BD и AC → O. ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a ; AC =2AO =a√3 . --- MA ⊥ ( ABCD ) ⇒ MA ⊥ AB и MA ⊥ AD . ΔMAB = ΔMAD и т.к. MA =AB =a ⇒ MB =MD =√(a² +a²) =a√2 , Следовательно ΔMCD = ΔMCB ( по трем сторонам _ MC -общее) и из ΔMAC : MC =√(MA²+ AC²) = √(a²+ 3a²) =2a . --- MC линия пересечения плоскостей MCD и MCB . Проведем в треугольнике ΔMCD высоту DK: DK ⊥ MC (K- основание высоты , K ∈ [ MC] ; MC² > MB² +DC² ⇒ ∠ MDC _тупой ) , точка K соединяем с вершиной B , очевидно BK ⊥ MC из ΔMCD = ΔMCB . Таким образом ∠DKB = α искомый угол . По теореме косинусов из ΔMCD : MD² = MC² +CD² - 2MC*CD*cos∠MCD ⇔ 2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒ sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4 KD =CD*sin∠MCD = (a√7) / 4 (из ΔKCD ). --- из ΔDKO : sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7. α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
О точка перетину діагоналей ромба АВ СД При паралельному перенесенні точка А відображаєтся на точку О точка с на С1 Знайдіть АС якщо АС дорівнює 5 см см
ABCD - ромб ;
∠A =60° ;
MA ⊥ ( ABCD ) ;
MA =AB .
α = ∠ ( (MCD) , (MCB) ) -? (угол между плоскостями )
Длину стороны ромба обозначаем через a : AB =AD =BC =CD =a;
точка пересечения диагоналей BD и AC → O.
ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a ;
AC =2AO =a√3 .
---
MA ⊥ ( ABCD ) ⇒ MA ⊥ AB и MA ⊥ AD .
ΔMAB = ΔMAD и т.к. MA =AB =a ⇒ MB =MD =√(a² +a²) =a√2 ,
Следовательно
ΔMCD = ΔMCB ( по трем сторонам _ MC -общее) и из ΔMAC :
MC =√(MA²+ AC²) = √(a²+ 3a²) =2a .
---
MC линия пересечения плоскостей MCD и MCB .
Проведем в треугольнике ΔMCD высоту DK: DK ⊥ MC (K- основание высоты , K ∈ [ MC] ; MC² > MB² +DC² ⇒ ∠ MDC _тупой ) , точка K соединяем с вершиной B , очевидно BK ⊥ MC из ΔMCD = ΔMCB .
Таким образом ∠DKB = α искомый угол .
По теореме косинусов из ΔMCD :
MD² = MC² +CD² - 2MC*CD*cos∠MCD ⇔
2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒
sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4
KD =CD*sin∠MCD = (a√7) / 4 (из ΔKCD ).
---
из ΔDKO : sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7.
α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).
ответ : 2arcsin (2 /√7) . * * * 2arcsin (2√7 / 7 ) * * * .