1. Написать уравнение окружности в общем виде, изобразить на координатной плоскости.
2. Выполнив построение, выясните взаимное расположение окружности и прямой, заданных уравнениями:
у=(х+2)2+(у+1) 2=4 ,у= –х+1 .В ответе написать пересекаются, не пересекаются, касаются
3. Написать окружности прямой, с центром в точке О(1;1) и радиусом 2 см.
Объяснение:
1.Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
2. (х+2)²+(у+1) ²=4 окружность с центром в точке (-2;-1) , радиусом 2
у= –х+1
(х+2)²+(-х+1+1) ²=4
(х+2)²+(2-х) ²=4
х²+4х+4+4-4х+х²=4
2х²=-8 или х²=-4 корней нет ⇒ не пересекаются.
3) (x – 1)²+ (y – 1)² =4
Поделитесь своими знаниями, ответьте на вопрос:
Коло з центром О, вписане в трикутник АВС, дотикається до сторони АВ трикутника в точці М. кут МВО дорівнює 21 . Знайдіть решту кутів трикутника МВО
a)Треугольник АВМ - равнобедренный ⇒ АВ=ВМ
Треугольник ДМС - равнобедренный ⇒ СД=МС
А так как АВ=СД (как противоположные стороны параллелограмма), то и ВМ=МС.
Значит, если АВ=х, то ВС=2х.
Полупериметр равен 36:2=18 см.
х+2х=18
3х=18
х=6
АВ=СД=6 см
ВС=АД=2·6=12 (см)
ответ. 6 см и 12 см.
b)Проведем высоты ВМ и СН. Так, как меньшая основа будет 6см., а большая 12, и эта трапецыя равобедренная, то ВС=МН, отсюда АМ=НД, ВС=12-6=6см.
НД+АМ=12-6=6см., а значит НД=6/2=3см.
Расмотрим треугольник АВМ, у него: ВМА=90гр., как угол при высоте; ВАМ=60гр., за условием задачи, отсюда угол АВМ=30гр. Значит АМ=1/2*ВА, отсюда ВА=2*АМ=2*3=6см.
ответ:6см.