Пусть D - середина гипотенузы AC, M лежит на AB, N лежит на BC. Поскольку вписанный угол B прямой, он опирается на диаметр. Итак, MN - диаметр этой окружности. По условию AC=2MN, причем AD=DC=BD (медиана прямого угла равна половине гипотенузы). Поэтому BD, будучи хордой этой окружности, равна диаметру. Следовательно, BD также является диаметром. Поэтому диагонали BMDN в точке пересечения делятся пополам, откуда BMDN - параллелограмм, а раз угол B прямой, это прямоугольник. Хотя это уже для нас не важно. Важно то, что MD параллельно BC, откуда MD - средняя линия треугольника ABC, то есть M - середина AB. Точно так же N - середина BC.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь круга, радиус которого равен 2, 1 см
Нормальный вектор заданной плоскости и будет направляющим вектором для заданной прямой.
Находим нормальный вектор как результат векторного произведения АВ х АС.
АВ: (-1; 1; 3), АС: (2; 2; -1).
i j k | i j
-1 1 3 | -1 1
2 2 -1 | 2 2 = -1i + 6j -2k -1j - 6i - 2k =
= -7i + 5j - 4k = (-7; 5; -4).
Теперь подставляем координаты точки М и получаем уравнение.
(x - 1)/(-7) = (y - 2)/5 = (z - 3)/(-4).