8см
Объяснение:
1й решения.
Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см
Поделитесь своими знаниями, ответьте на вопрос:
Около прямоугольного треугольника, катеты которого равны 3 дм и 4 дм, описан круг. Вычисли длину окружности C и площадь круга S C= π дм; S= π дм2.
S= (a+b) / 2 × h, где a и b - длины оснований, h - высота
h= 3 , a=10, b=3
S= (10+2) /2 × 3
S=6×3 = 18
Для нахождения периметра мы должны сначала найти длину боковой стороны трапеции. Так как трапеция равнобедренная, если опустить высоты из обоих тупых углов к противоположному основанию, мы получим РАВНЫЕ прямоугольные треугольники справа и слева и прямоугольник в середине. Нам нужно вычислить гипотенузу треугольников - это и будет боковая сторона трапеции.
Мы знаем длину одного из катетов : h=3, длина второго катета будет равняться разности оснований, делёной на 2. (10-2)/2=4.
Дальше вычисляем гипотенузу по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
√( 3²+4²)=√25=5 - длина боковой стороны.
складываем боковые стороны и основания - получаем периметр.
P= 10+2+5+5 =22