Если соединить центр окружности с вершинами А, В и С, то получим три равнобедренных треугольника.
1) прямоугольный с углом 90° при вершине О.
2) тупоугольный, углы при основании ВС равны по 15°. Центральный угол равен
180-2*15=150°
2)тупоугольный АОВ
Центральный угол в треугольнике АОВ равен
360=90-150=120 °
АВ отрезком, равным расстоянию от О до АВ, делится пополам.
угол АВО, в образовавшемся треугольнике при вершине В, равен 30°
Радиус в этом треугольнике - его гипотенуза.
Гипотенуза вдвое больше катета, противолежащего углу 30°
Она равна 2*6=12 см
Радиус окружности равен 12 см.
Поделитесь своими знаниями, ответьте на вопрос:
Самостоятельно запиши формулу для нахождения расстояния от начала координат О(0;0) до точки М(х;у)
ответ: √(x² + y²)
Объяснение:
Расстояние между двумя точками -- это отрезок, соединяющий эти точки.
Воспользуемся формулой нахождения расстояния между двумя точками.
Пусть А(a₁; a₂), B(b₁, b₂), тогда
В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:
Воспользуемся координатной плоскость и теоремой Пифагора.
Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).
(координатная плоскость во вложениях)
Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.
Также MN = OK = y
Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM: