Т.к. все медианы треугольника пересекаются в одной точке, то CD проходит через точку O. Медианы точкой пересечения делятся 2:1, считая от вершины. Тогда BO=8 и AO=6. Т.к. медианы AM и BK пересекаются под прямым углом, то треугольник AOB прямоугольный, тогда его медиана OD равна половине гипотенузы, которую можно найти по теореме Пифагора, как AB²=BO²+AO² => AB=10. Тогда OD=5. Применив еще раз свойство деления медиан точкой пересечения, получим, что CD=15.
Задача решена!
alenaya69918
26.04.2021
Стороны треугольника равны 13, 20, 21 см. В треугольник вписан полукруг, центр которого лежит на средней по длине стороне Найти площадь полукруга. Пусть дан треугольник АВС. Так как полукруг вписан в треугольник, он касается его большей и меньшей сторон в некоторых точках. Пусть это будут точки К на стороне АВ, равной 21 см, и М на меньшей стороне ВС=13 см. Обозначим центр окружности О и соединим его с вершиной В. Получим два треугольника АОВ и СОВ. Для каждого из них радиус полукруга является высотой, т.к. перпендикулярен к точке касания. Тогда Ѕ ∆ АОВ= АВ*r:2 S ∆ COB= BC*r:2, а площадь треугольника АВС равна сумме этих треугольников. Найдем площадь ∆ АВС по формуле Герона. Ѕ=√ p(p-AB)(p-BC)(p-AC), где р - полупериметр ∆ АВС и равен (21+20+13):2=27 см. Подставив в формула значения сторон, получим Ѕ ∆ АВС=126 см² Составим уравнение: АВ*r:2+ BC*r:2=126 см² r*(АВ+ВС):2=126 r=126*2:34=126/17 Тогда площадь круга πr² с таким радиусом равна π*15876/289, а его половина π*7938/289 см² Приближенно, если принять π=3,14, площадь полукруга будет ≈86,247 см² или, если применить величину π по калькулятору, ≈86,3 см²
(см. объяснение)
Объяснение:
Т.к. все медианы треугольника пересекаются в одной точке, то CD проходит через точку O. Медианы точкой пересечения делятся 2:1, считая от вершины. Тогда BO=8 и AO=6. Т.к. медианы AM и BK пересекаются под прямым углом, то треугольник AOB прямоугольный, тогда его медиана OD равна половине гипотенузы, которую можно найти по теореме Пифагора, как AB²=BO²+AO² => AB=10. Тогда OD=5. Применив еще раз свойство деления медиан точкой пересечения, получим, что CD=15.
Задача решена!