ответ: Да, может, если данный прямоугольный треугольник равнобедренный
Объяснение:Пусть Δ АВС-прямоугольный, ∠С=90°, высота СД⊥АВ, гипотенуза АВ=24 см. Высота СД делит гипотенузу АВ на 2 отрезка АД и ВД, пусть ВД=х см, а АД=(24-х)см. Так как высота, проведенная из вершины прямого угла, делит гипотенузу на пропорциональные отрезки: ВД/СД= СД/АД ⇒х/12=12/(24-х) ⇒ х(24-х) =144 ⇒ х²-24х +144=0 ⇒ (х-12)²=0 ⇒х=12 (см). Тогда АД=12 см, АС=12 см. Значит у ΔВДС имеем, что ВД=СД=12 см, ⇒∠В=45°, тогда ∠А=45°, т.е. Δ АВс равнобедренный. Значит гипотенуза АВ может быть равной 24 см, если данный прямоугольный треугольник равнобедренный.
Поделитесь своими знаниями, ответьте на вопрос:
Основою піраміди є правильний трикутник зі стороною 6см. Бічні ребра нахилені до площини основи під кутом 60°. Знайти апофему піраміди
А1В1 : АВ = В1С1 : ВС =А1С1 : АС = 1 : 2
Поскольку три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то они подобны. Для подобного треугольника А1В1С1 соотношение сторон будет таким же: 7:8:11. Пусть они будут 7х, 8х и 11х. Зная периметр, запишем:
7х+8х+11х=52
26х=52
х=2
А1В1=7*2=14 см, В1С1=8*2=16 см, А1С1=11*2=22 см