94.
Если углы 1 и 2 равны, а они образованы прямой, пересекающей две другие, то прямые b и c параллельны.
Угол 2 равен углу 3. Углы 2 и 3 являются внешними накрест лежащими, а по теореме, если прямая, секущая две прямые, образует равные внешние накрест лежащие углы, то эти прямые параллельны. b||c, и b||a, следовательно, прямые a и c параллельны.
95.
По теореме, если Треугольники имеют равные две стороны и угол между ними, то эти Треугольники равные. Стороны AC и A1C1 соответственны и лежат на одной прямой, а также находятся над прямой, следовательно AB||A1B1.
97. Картинка выше.
Все тупые углы - 133°
Все острые - 47°
Объяснение:
Независимо, если какие-то подобные, или соответственные стороны треугольников лежат на одной прямой и находятся в одной полуплоскости, то все подобные стороны параллельны.
Поделитесь своими знаниями, ответьте на вопрос:
Перерисуйте в тетрадь рису-нок 304. Проведите через точ-ки A, B, C окружность, пользу-ясь линейкой со шкалой, уголь-ником и циркулем.Начертите разносторонний тре
ответ:Если две прямые на плоскости,в данный момент это ВК и MN ,перпендикулярны к одной и той же прямой АС,то они параллельны,т к к прямой в плоскости из любой точки можно провести только один перпендикуляр
Параллельность прямых доказана
Теперь об углах
<СМN и <СВК являются соответственными и равны между собой
<СМN=<CBK=46 градусов
В условии сказано,что ВК биссектриса угла АВС
Биссектриса делит угол из которого она проведена на два равных угла,один из них угол СВК
<АВС=<СВК•2=46•2=92 градуса
Объяснение: