AO = корень из 29 (образующая)
Объяснение:
1.
r - малый радиус, равный 2
R - больший радиус, равный 5
ОО1 - высота, равная 4
АВ - образующая конуса (l)
Sус.б.п. = пи*(r+R)*l
Рассмотрим прямоугольную трапецию АВОО1. ВО=2, АО1=5, ОО1=4.
Проведем высоту ВК, равную ОО1.
Рассмотрим треугольник АКВ - прямоугольный. АК = АО1 - ВО = 3
АВ^2 = BK^2 + AK^2
АВ = 5
Sус.б.п. = пи*(2+5)*5 = 35пи
3.
R = 5 см
ОО1 = 2 см
АОВ - осевое сечение
Рассмотрим треугольник АОВ.
S = 1/2 * АВ * ОО1
АВ = 2R = 2*5=10 см
S = 1/2 * 10 * 2 = 10 см^2
Рассмотрим треугольник АО1О - прямоугольный.
АО^2 = OO1^2 + AO1^2
Поделитесь своими знаниями, ответьте на вопрос:
с геометрией!очень нужно!(внимательно прочитайте советы для доказательства)
1. 15 см.
2. 31,75 см².
3. 36 м².
4. 21 кв. ед.
5. 113,4 см².
6. 6 см.
7. 50 см².
8. 27 см².
9. 7 см.
Объяснение:
1. Пусть меньший катет равен 2х. Тогда больший равен 5х.
S=1/2(ah)=1/2(2x*5x)=(1/2)10x²=5x²;
5x²=45;
x²=9;
х=±3; (-3 - не соответствует условию) .
х=3 см.
Больший катет равен 5х=5*3=15 см.
***
Площадь треугольника вычисляется по формуле:
S=1/2 ah;
S=12.7*5/2= 31.75см².
***
3. ABCD - прямоугольная трапеция. ∠А=∠В=90°. ВС=7 м, AD=11 м.
∠D=45°. Высота СЕ отсекает равносторонний треугольник СЕD, у которого ∠D=45°, CE⊥AD.
ED=CE=AD-BC=11-7=4 м.
S=h(a+b)/2=4(7+11)/2=2*18=36 м².
***
4. Есть несколько вычисления площадей фигур на клетчатой бумаге. Предложу свой.
Дополним параллелограмм до прямоугольника и вычтем площади дополнительных треугольников (см. приложение).
S=S(прямоугольника) - 2S(треугольника);
S=5*7-2(2*7)/2=35-14= 21 кв. ед.
***
5. S=ah, где а=16,2 см. Найдем h.
BE/AB=Sin 30°;
BE=AB*Sin30° =14*(1/2)=7 см.
S=16.2*7=113.4 см²
***
6. Площадь ромба по его диагоналям:
S=D*d/2;
d=2S/D=2*24/8=48/8=6 см.
***
7. Пусть сторона квадрата равна а см.
Найдем а: 5²= а²+а²; 2а²=5²; а=√(5²)/2=5√2 см;
S=a²=(5√2)²=50 см².
***
8. Пусть одна сторона равна х тогда вторая равна 3х.
Р(ABCD)=2(AB+BC);
2(x+3x)=24;
4x=12;
x=3 см - меньшая сторона (AB).
Большая сторона равна 3х=3*3=9 см (BC).
Площадь равна S=AB*BC=3*9=27 см².
***
9. S(ABC)=(1/2)AB*CE=1/2*14*10=70 см².
Ту же площадь можно найти по формуле:
S=1/2(BC*AF), где AF - высота, проведенная к стороне ВС
1/2(20*AF)=70;
20*AF=140;
AF=140/20=7 см.