shoko91
?>

Геометрия Решите хотя бы одно из заданий

Геометрия

Ответы

Katkova

по теореме Фалеса  прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам

 

А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.

Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.

 

Периметр четырехугольника сумма длин всех его сторон

поэтому периметр полученного четырехугольника равен

a/2+a/2+b/2+b/2=a+b

ответ: a+b

Алексеевич620

3.Теорема о вписанном угле: Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°

4.Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой.

Также равны биссектрисы, медианы и высоты, проведённые из этих углов.

Биссектриса, медиана и высота, проведенные к основанию совпадают между собой

Центры вписанной и описанной окружностей лежат на этой линии

Углы, противолежащие равным сторонам, всегда острые (следует из их равенства).

5.Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

6. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

8. Стороны треугольника пропорциональны синусам противолежащих углов

9.В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

11.   если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.

 Из второго признака равенства треугольников следует, что:
  если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.

 если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

13. Диагонали ромба пересекаются под прямым углом. Диагонали ромба являются биссектрисой его углов

15. Серединные перпендикуляры к сторонам треугольника (или другого описываемого окружностью многоугольника) пересекаются в одной точке — центре описанной окружности.

Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

 

 

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Геометрия Решите хотя бы одно из заданий
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Жукова_Петрович1281
zodgener
lshimina65
Vera-zero281
Sergei Gaishun
miheev-oleg578
bas7572513
vera141187
hvostna23
YekaterinaAbinskov
artemiusst
bufetkonfet53
Alekseevich1012
ВадимСмирнов116
joini09