bsi771184
?>

У коло з радіусом 10 см вписано прямокутник АВСD , у якого сторона АВ у 2 рази менша за діагональ. Знайти довжину дуги кола, яка стягується дугою АВ.

Геометрия

Ответы

kovalenko262
R-радиус; d-диаметр; h-высота; Sбок--площадь боковой поверхности; Sосн--площадь основания; V--обьем; l-длина окружности; П-число Пи; ^ -степень. Дано; равносторонний цилиндр; тогда его высота= диаметру основания; длина окр=16П; тогда сперва ищем радиус=длина окружности делить на 2П; теперь мы можем найти диаметр= 2*радиус; и он=высоте цилиндра= 2*радиус; ищем площадь боковой поверхности, подставляя в формулу sбок=2пrh найденные данные; чтобы найти обьем нужно сперва площадь основания найти sосн=Пr^2; и тогда уже ищем обьем по формуле v=sосн*h Решение; r=l/2П; -->> 16П/2П=8; d=2r=2*8=16; d=h; h=2r=2*8=16; sбок=2Пrh; -->> 2П*8*16= 2П*128=256П см^2; v=sосн*h;-->> sосн=Пr^2; -->>П*8^2=64п см^2; v=sосн*h; -->> v=64п*16= 1024П см^3; ответ: площадь боковой поверхности цилинда 256П см^2; обьем 1024П см^3.
billl24

1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то  CO ⊥ AB.  Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно,  ∠ACB = 2∠BCO = 2·40° = 80°.

ответ: 80°.

2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒ 

АС=ВС=20:2=10 

ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный. 

Углы при основании равнобедренного треугольника равны. 

∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°

ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных. 

 СО=АС=СВ=10 см

ответ. 10 см.

3. Вот так. Только во второй задаче бери радиус больше половины отрезка

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

У коло з радіусом 10 см вписано прямокутник АВСD , у якого сторона АВ у 2 рази менша за діагональ. Знайти довжину дуги кола, яка стягується дугою АВ.
Ваше имя (никнейм)*
Email*
Комментарий*