Измерьте углы четырёхугольника ABCD. a) Сравните величину углов <А и <С; <В и <D; <А и <В; <D и <С; б) Найдите сумму градусных мер углов четырёхугольника АВСD.
Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Paikina Natalya30
11.10.2022
Пусть х и у - длины смежных сторон искомого прямоугольника. Обозначим d - его диагональ, p - полупериметр. Тогда x+y=p и x²+y²=d². Т.е. х и у - абсцисса и ордината точки пересечения прямой и окружности, заданных этими уравнениями. Поэтому процесс построения выглядит так: 1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат). 2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²). 3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью. 4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый. Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Измерьте углы четырёхугольника ABCD. a) Сравните величину углов <А и <С; <В и <D; <А и <В; <D и <С; б) Найдите сумму градусных мер углов четырёхугольника АВСD.
Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a,
то стороны исходного треугольника будут такие
(a + r, b + r, 35)
стороны меньшего треугольника
(a, r, 15)
стороны большего
(r, b, 20)
и все эти три треугольника подобны между собой.
отсюда a/r = 15/20 = 3/4;
то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5)
То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4.
То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20)
Исходный треугольник имеет стороны 21, 28, 35, его площадь 294;
длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.