Поделитесь своими знаниями, ответьте на вопрос:
2. Ребро куба равно 10 см. Найдите: а) диагональ куба; б) площадь сечения, проходящего через две диагонали куба. 3. Точка О – центр вписанной в треугольник АВС окружности. К плоскости данного треугольника проведен перпендикуляр ОК. Найдите расстояние от точки К до сторон треугольника, если АВ=ВС=15 см., АС=24 см., ОК=8 см. 4. В прямоугольном параллелепипеде ABCDA B C D дано: АВ=ВС=6 под корнем 2 см., ВD =24 см. Найдите: а) расстояние между прямыми ВD и АА ; б) угол между прямой ВD и плоскостью ABC.
ответ:
объяснение:
пирамида правильная. значит, основанием данной пирамиды является правильный треугольник, а вершина проецируется в его центр.
центр правильного треугольника - центр вписанной и описанной окружности, т.е. точка пересечения его высот, являющихся в правильном треугольнике и медианами и биссектрисами.
а)
площадь поверхности пирамиды - сумма площадей основания и боковой поверхности.
формула площади правильного треугольника через его сторону
s=a²•√3/4
s(abc)=16√3/4=4√3 см²
в правильной пирамиде все боковые грани - равные равнобедренные треугольники.
для нахождения их площади следует найти апофему (апофемой называется высота боковой грани, проведенная из вершины правильного многоугольника.)
углы правильного треугольника равны 60°
высота основания сн=вс•sin60°=4•√3: 2=2√3
в правильном треугольнике высота=медиана.
медианы треугольника точкой пересечения делятся в отношении 2: 1, считая от вершины. =>
он=2√3: 3=2√3: 3
он⊥ав=>
по т. о 3-х перпендикулярах мн⊥ав и является высотой ∆ амс.
высота пирамиды перпендикулярна плоскости основания. =>
мо⊥сн
по т.пифагора из прямоугольного ∆ мон
мн=√(mo*+oh*)=√(36+12/9)=√(336/9)=(√336)/3
s(amb)=mh•ab: 2=(2√336)/3
s (бок)=3•(2√336): 3=2√336
s (полн)=4√3+2√336=2√3•(2+√112)=≈ 43,5888 см²