Если в параллелограмме две соседние стороны равны, то такой параллелограмм является квадратом - неверно
Если диагонали параллелограмма равны, то это прямоугольник - верно
У любой трапеции основания равны - неверно
У любой трапеции основания параллельны-верно
В любой трапеции есть два равных угла - неверно
Все углы ромба равны - верно
В любом прямоугольнике диагонали взаимно перпендикулярны
в параллелограмме есть два равных угла - верно
Диагонали ромба перпендикулярны - верно
Диагональ равнобедренной трапеции делит ее на два равных треугольника- неверно
Диагонали ромба точкой пересечения делятся пополам - верно
Любой квадрат является прямоугольником - верно
Основания равнобедренной трапеции равны - неверно
Боковые стороны любой трапеции равны - неверно
Если диагонали параллелограмма равны, то это квадрат - неверно
Диагонали прямоугольника точкой пересечения делятся пополам - верно
Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом - верно
Диагональ трапеции делит ее на два равных треугольника - верно
Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм - квадрат - верно
Объяснение:
Доказательства в объяснении.
Объяснение:
1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
Что и требовалось доказать
Поделитесь своими знаниями, ответьте на вопрос:
Решить.в равнобедренном треугольнике высота, опущенная на основание, равна 15, а радиус вписанной окружности равен 6.найдите радиус описанной около этого треугольника окружности.
есть много вариантов решений, вот один из них
из центра вписанной окружности проведем перпендикуляр к боковой стороне (в точку касания, конечно). получившийся треугольник подобен треугольнику, образованному боковой стороной, высотой и половиной основания (по 2 углам).
от центра до вершины a (противоположной основанию a) расстояние 15 - 6 = 9.
и мы имеем сотношение 6/9 = sin(a/2) = 2/3;
далее тригонометрия, суть которой - получить длину основания и синус угла а, после чего радиус описанной окружности находится из теоремы синусов. вот такой коварный план :
cos(a/2) = корень(1 - 4/9) = корень(5)/3.
отсюда tg (a/2) = 2/корень(5); a/2 = 15*tg(a/2); a = 12*корень(5);
sin(a) = 2*sin(a/2)*cos(a/2) = 4*корень(5)/9;
r = a/(2*sin(a)) = 27/2;
, странный ответ.