Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABC. Тогда по теореме о трех перпендикулярах OK ⊥ BC, ОМ ⊥ АС и ON ⊥ AB.
Тогда, ∠SKO = ∠SMO = ∠SNO = 45° — как линейные углы данных двугранных углов.
А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу.
Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ΔАВС.
Выразим площадь прямоугольника АВС:
С другой стороны можно S=p×r
Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ΔSOK является равнобедренным и SO=OK=3 см.
ответ: 3 см.
vasiliyglukhov
27.03.2020
Высота в равностороннем треугольнике является также медианой и биссектрисой, значит АД=ДС, угол АВД= углу ДВС. Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников: 1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС 2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота. 3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В прямоугольном треугольнике МРН с прямым углом М сторона РМ в 2 раза меньше стороны НР. Найдите угол Р.
Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABC. Тогда по теореме о трех перпендикулярах OK ⊥ BC, ОМ ⊥ АС и ON ⊥ AB.
Тогда, ∠SKO = ∠SMO = ∠SNO = 45° — как линейные углы данных двугранных углов.
А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу.
Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ΔАВС.
Выразим площадь прямоугольника АВС:
С другой стороны можно S=p×r
Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ΔSOK является равнобедренным и SO=OK=3 см.
ответ: 3 см.