Линия пересечения плоскости AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.
Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.
ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:
а)
Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.
б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:
в) Найти площадь боковой поверхности - самая простая часть этого задания:
, где и - периметр основания и высота пераллелепипеда соответственно.
г)
Поделитесь своими знаниями, ответьте на вопрос:
«Сопряжение двух прямых под углом» Линии построения выполнить согласно требований R=25 мм угол=15 градусов
0,5 мм
Объяснение:
Пусть толщина буквы - х мм.
Буква Н состоит из трёх прямоугольников: двух одинаковых вертикально расположенных и одного горизонтально расположенного.
Площадь прямоугольника вычисляется по формуле: S=a×b, где а - длина, b - ширина.Тогда площадь вертикально расположенных прямоугольников : по 9х мм² каждый.
Площадь горизонтально расположенного прямоугольника: (4-2х)×х мм².
Так как площадь буквы составляет 10,5 мм², составляем уравнение:
9х+9х+(4-2х)×х=10,5
18х+4х-2х²-10,5=0
-2х²+22х-10,5=0
х²-11х+5,25=0
Получили, что толщина буквы равна 0,5 мм либо 10,5 мм.
10,5 мм не подходит по условию, т.к. в этом случае ширина и длина самой буквы будет больше, чем 4мм и 9мм соответственно.
ответ: толщина буквы 0,5 мм