Шеңбердің центрінен a түзуіне дейінгі арақашықтық 5 см, ал b түзуіне дейінгі арақашықтық 4 см , шеңбер диаметрі 8 см. Шеңбердің әр түзумен (a, b) неше ортақ нүктесі болуы мүмкін?
1.Дополнительные построения :АН параллельно ВСDК параллельно АН2. <КDA + <EDC=90* (смежные с прямым углом) ] } <EDC = <KAD<KAD + <KDA =90*(по т. о сумме углов треугольника)]3.<EDC = <KAD] } Треугольники АКD и DEC - подобны, из чего следует, что <AKD = <DEC ] k( коэффициент подобия) = AD/DC=AK/DE=2/3AK=DE*k=9*2/3=6KHED- прямоугольник ( все углы прямые) }KH+DE=9AH=AK+KH=15Sabc=AH*BC/2 } BC= 2*Sabc/AH=60/15=4 ответ : 4 см
Вячеславович-Дмитрий1694
15.05.2023
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Шеңбердің центрінен a түзуіне дейінгі арақашықтық 5 см, ал b түзуіне дейінгі арақашықтық 4 см , шеңбер диаметрі 8 см. Шеңбердің әр түзумен (a, b) неше ортақ нүктесі болуы мүмкін?