Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора. ОН= а\2
kotocafe45
05.08.2022
Очень простая задача. Пусть EM пересекает AB в точке K. Тогда ∠MED = ∠BEK; ∠BEK = ∠BAE; (стороны углов перпендикулярны) ∠BAE = ∠EDC; (вписанные углы, оба опираются на дугу CB) => ΔEMD - равнобедренный; EM = MD; На гипотенузе прямоугольного ΔCED есть только одна точка, равноудаленная от вершины прямого угла и вершины острого - её середина. а) доказано. б) Если ∠CDB = 60°; то ∠EAB = 60°; AE = AB*cos(60°) = 2; ED^2 = AD^2 - AE^2 = 60; ED = √60; Само собой, ED = EM, так как ΔEMD в данном случае равносторонний (все углы 60°);
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Отрезки BB1 и CC1 - высоты треугольника ABC с острым углом A. Докажите что треугольники AB1C1 и ABC подобны, и найдите коэффициент их подобия.
Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2