Неожиданно очень простая задача.
Если на ВН, как на диаметре, построить окружность, то она пройдет через основания высот, опущенных из вершин А и С (на стороны ВС и АВ соответственно, пусть это АА1 и СС1, так вот, эта окружность проходит через А1 и С1). Связано это просто с тем, что треугольники ВНС1 и ВНА1 - прямоугольные.
Эта окружность является описанной для треугольника А1ВС1, и ВН - её диаметр.
Далее, легко видеть, что ВА1 = ВА*√3/2 и ВС1 = ВС*√3/2, поскольку угол АВС = 30 градусов.
Поэтому угол АВС общий у треугольников АВС и А1ВС1, и стороны этого угла в треугольниках пропорциональны, то есть треугольник А1ВС1 подобен треугольнику АВС (в частности, А1С1 = АС*√3/2).
Поскольку размеры треугольника АВС в 2/√3 раза больше размеров треугольника А1ВС1, во столько же раз больше и диаметр описанной окружности, то есть
ВН = 4 = (2*R)*√3/2 = R*√3, R = 4*√3/3
Я добавлю замечание, не большое такое.
Треугольник А1ВС1 подобен треугольнику АВС при любом угле АВС, а не только - когда он равен 30 градусам.
Пусть угол АВС = Ф.
В общем случае ВС1 = ВС*cos(Ф); BA1 = BA*cos(Ф), то есть угол АВС у треугольников общий, и стороны общего угла пропорциональны. Поэтому тр-ки АВС и А1ВС1 подобны, и коэффициент подобия равен cos(Ф).
Такой же пропорцией должны быть связаны диаметры описанных окружностей 2*R и ВН.
Получается соотношение, которое по форме почти точно воспроизводит теорему синусов :), только с заменой синуса на косинус.
BH = (2*R)*cos(Ф).
В данном случае cos(Ф) = √3/2 и ВН = R*√3.
Поделитесь своими знаниями, ответьте на вопрос:
1. Заранее подготовьтесь к работе. Приготовьте тетради, ручки, хорошо подточенные карандаши, ластики, линейку и обязательно ЦИРКУЛЬ. Такая организация своего рабочего места вам сэкономить несколько минут и использовать их для решения задач. В 11-00 все работы должны быть отправлены на проверку в класс, и на Viber ( для подстраховки, так как некоторые ученики работы загружают не верно, были проблемы вчера 2. Постарайтесь давать полное объяснения к каждому действию в решениях задач. При построении пользуйтесь циркулем и линейкой обязательно. Если решение заданий будет полное, то вы сможете получить за №1 - за №2-5 по 2, КОНТРОЛЬНАЯ РАБОТА №4 1. Две окружности (О1; r) и (О2; R) касаются друг друга внешне. Известно, что расстояние между их центрами равно 17 см, а меньший радиус r = 5см. Выполнить рисунок. Найти радиус R. Выполните это же задание при внутреннем касании этих окружностей. 2. Нарисуйте окружность с центром в точке О. Проведите диаметр АВ и хорду АС, равную радиусу этой окружности. Найдите величину угла ВАС. 3. Нарисуйте окружность с центром О. Проведите диаметр FD и хорду DE. Найдите величину угла FDE , если величина угла OEF равна 23 градуса. 4. Нарисуйте тупой угол АВС любого размера. Постройте с циркуля и линейки угол А1В1С1 равный ему. 5. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 4см и 21см. Найдите радиус окружности, если периметр треугольника равен 56см.
Если малость схитрить, то можно выбрать удобный частный случай и решить для него. Например, для прямоугольного треугольника ABC с прямым углом у вершины B. Тогда три искомые описанные окружности будут иметь диаметры равные длинам сторон этого треугольника: 7 (меньший катет) , 14 (гипотенуза) и 14*корень(3)/2 (больший катет). В сумме диаметры составят 7*(3+корень(3)), а сумма радиусов будет вдвое меньше.
Но это, конечно, фейковое решение основанное на уверенности в том, что условие правильное и задача однозначно решается.