ответ:Проведем диагонали АС и ВD.Точку пересечения обозначим Е.
В треугольниках ABE и CDE имеется по два равных угла: один - по
условию, второй - вертикальный.
Первый признак подобия треугольников:
Если два угла одного треугольника соответственно равны двум углам
другого, то такие треугольники подобны.=
∆ ABE=∆ CDE,=
АЕ пропорциональна DE, ВЕ пропорциональна ЕС.
В треугольниках ADE и BCE:
АЕ пропорциональна DE, BE- пропорциональна СЕ, углы АЕD и ВЕС
равны, как вертикальные.
Второй признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам
другого треугольника и углы, заключенные между этими сторонами,
равны, то такие треугольники подобны.
Треугольники ADE и BCE подобны и углы, противолежащие
пропорциональным сторонам, равны. =BDA=BCA
надеюсь правильно ✅
Объяснение:
речь идет о правильных (равносторонних и равноугольных) многоугольниках.
n означает число сторон.
а - сторона
Р - периметр
S - площадь
R - радиус описанной окружности, он же - расстояние от центра многоугольника до вершины.
r - радиус вписанной окружности, он же - расстояние от центра многоугольника до стороны.
Центр совпадает с точкой пересечения диагоналей.
1. Треугольник, задана площадь.
S = (1/2)a*a*sin(60) = a^2 *√3/4; a^2 = 48;
а = 4*√3; P = 12*√3; r = 2*S/P = 2; R = 2*r = 4;
2. Квадрат, задана сторона. (очень трудная задача)
P = 24; S = 36; r = 3; R = 3*√2;
3. Шестиугольник. Составлен из 6 равносторонних треугольников, поэтому R = a = 8; P = 48; r = R*sin(60) = 4*√3; S = (1/2)*P*r = 96*√3;
Поделитесь своими знаниями, ответьте на вопрос:
У прямокутній трапеції АВСD(∠С=∠D=90°) діагональ АС є бісектрисою кута А при основі, ∠САD=30°, СD=12см.Знайти основи і площу трапеції. * 4√3см, 8√3см, 72√3 см^2 8√3см, 12√3 см, 120 √3 см^2 8√3см, 12√3 см, 96√3 см^2
Второй ответ правильный.
Объяснение:
Держи.
Расписала настолько подробно,насколько могла.