Поделитесь своими знаниями, ответьте на вопрос:
Через точку А проведены касательная АВ (В - точка касания) и секущая, которая пересекает окружность в точках С и Д. Найдите СД, если АВ = 6см, АС = 4 см 2. Радиус окружности с центром в точке О равен 24см. Найдите хорду АВ, если угол АОВ равен 60 градусам. Варианты ответа: 3. В окружность с центром в точке О, вписан угол АСД равный 54 градуса. Найдите величину угла ОАД. 4. Хорды АВ и СД пересекаются в точке Е.Найдите ЕВ, если АЕ = 7, 5см, СЕ = 15см, ЕД = 2, 5см
1.3) Теорема. От любой данной точки можно отложить направленный отрезок, равный данному, и притом – только один.
Если данный направленный отрезок – нулевой, то утверждение теоремы очевидно. Пусть отрезок – ненулевой. Проведем через точку С прямуюl, параллельную (АВ). Направленный отрезок, который нам надо отложить, обязан лежать на этой прямой (ибо он коллинеарен ) и иметь длину |АВ|. От точки С можно отложить ровно два таких отрезка – обозначим изи(рис. 4), причем(почему?). В силу (Н4) если, то, а если, то. Таким образом, в обоих возможных случаях существует ровно один искомый отрезок, что и требовалось доказать.
(1.4) Теорема. Все направленные отрезки разбиваются на непересекающиеся классы отрезков таким образом, что любые два отрезка из одного класса равны между собой, а из разных классов – не равны.
Зафиксируем произвольную точку О, и для каждого направленного отрезка , исходящего из этой точки, обозначим через К() класс (т.е., совокупность) всех равных ему отрезков. При этом каждый направленный отрезок попадет ровно в один из таких классов, а именно, в класс равного ему направленного отрезка, отложенного от точки О. Поскольку любые два отрезка из одного и того же класса К() равны отрезку, они равны и между собой (теорема 1.2). Теперь допустим, что нашлись равные отрезкиК() иК(). Но тогда===, откуда по той же теореме 1.2=. Таким образом, если два отрезка равны, то они лежат в одном классе, то есть отрезки из разных классов не могут быть равными. В частности, это означает, что разные классы не могут пересекаться.