Дано: ΔABC - прямоугольный, ∠C = 90°, ∠ABC = 60°, AC = 6 см.
Найти: а) AB; б) CD
Решение: 1) Рассмотрим ΔABC: ∠ABC = 60°, ∠C = 90°, ∠A = 30° (т. к. 180° - (90° + 60°) = 30); Найдем сторону AB через синус угла ABC (синус острого угла равен отношению противолежащего катета к гипотенузе): sin60° = = = ; Отсюда AB = = см.
2) Рассмотрим ΔACD, в котором ∠D = 90°, а ∠CAD = 30° (из 1); Согласно свойству прямоугольного треугольника с углом в 30°, катет, лежащий напротив угла в 30°, равен половине гипотенузы, следовательно, CD = 1/2*AC = 1/2*6 = 3 см.
ответ: а) см; б) CD = 3 см.
Поделитесь своими знаниями, ответьте на вопрос:
Выполните построение выясните расположение окружности заданной уравнением (х-5)^2+(у-3)^2=4, (х-2)^2+(у+1)^2=9
1).Противоположные углы параллелограмма равны: одна пара одинаковых углов - острые углы, другая пара одинаковых противоположных углов - тупые углы. Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Сумма всех четырех углов параллелограмма равна 360° .
Если сумма двух углов равняется 168°, значит углы противоположные и при этом острые. Противоположные углы равны между собой, значит оба противоположных угла- острые- 168 : 2 = 84°.
Значит другие противоположные углы - тупые - 180° - 84° = 96°.
(или так (360-168) : 2 = 96° ).
3).Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Задачу решим с уравнения, где х° - острый угол А (т. к. он меньший, значит он острый);
Тогда: 5х° - угол В (т. к. он в пять раз больше угла А);
Составим и решим уравнение:
х + 5х = 180°;
6х = 180°;
х = 180 / 6;
х = 30° - угол A = углу C (так как они противоположны );
5х = 5 * 30° = 150° - угол B = углу D (так как они противоположны). Это и есть тупые углы.
ответ: 150°