Пусть А, В и С - это вершины треугольника, причем А и В - вершины при основании. Точка пересечения боковых медиан - О. Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3). В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2. Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ). Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ). АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6. S = СМ * АВ /2 = 6 * 4 / 2 = 12.
appmicom
02.05.2022
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основа трикутника дорівнює 12 см, а висота = 8 см. Знайдіть площу трикутника, утвореного середніми лініями даного трикутника.
Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3).
В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2.
Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ).
Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ).
АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6.
S = СМ * АВ /2 = 6 * 4 / 2 = 12.