хорда АВ=20, хорда СД=16, АВ перпендикулярна СД, проводим радиусы ОД=ОС=ОА=ОВ=корень114, треугольник СОД равнобедренный, проводим высоту ОН на СД=медиане, СН=НД=1/2СД=16/2=8,
треугольник ОДН прямоугольный, ОН=корень(ОД в квадрате-НД в квадрате)=КОРЕНЬ(114-64)=корень50
треугольник АОВ равнобедренный, проводим высоту ОК на АВ=медиане, АК=КВ=1/2АВ=20/2=10, треугольник АКО прямоугольный, ОК=корень(ОА в квадрате- АК в квадрате)=корень(114-100)=корень14,
треугольник ОНК прямоугольный НК-расстояние между серединами хорд=(ОН в квадрате-ОК в квадрате)=корень(50-14)=6
Поделитесь своими знаниями, ответьте на вопрос:
Пирамида пересечена плоскостью, параллельной основанию, которая делит высоту пирамиды в отношении 2 : 8, считая от вершины.Вычисли площадь основания, если площадь сечения равна 20 дм2если пирамида пересечена плоскостью, которая параллельна основанию, то площади сечения и основания относятся как ? расстояний от них до вершины пирамиды.
ВО/ОН=2/1,
отсюда ОН=ВО/2=24/2=12 см
ВН=24+12=36 см
Рассмотрим треугольник АОН. Он прямоугольный, т.к. в равнобедренном треугольнике медиана, проведенная к основанию, является также и высотой. Зная катет АО в прямоугольном треугольнике АОН, найдем АН по теореме Пифагора:
АН = √AO² - OH² = √(9√2)² - 12² = √18=√9*2=3√2 см
Треугольники ВОЕ и ВНА подобные по первому признаку подобия: два угла одного соответственно равны двум углам другого. В нашем случае угол НВА - общий, а углы ВЕО и ВАН равны как соответственные углы при пересечении двух параллельных прямых ЕК и АС секущей АВ.
Для подобных треугольников можно записать:
ВО/ВН=ЕО/АН, отсюда
ЕО=ВО*АН/ВН=24*3√2/36=2√2 см
Поскольку медиана ВН делит ЕК пополам, то
ЕК=2*ЕО=2*2√2=4√2 см