Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).
Moroshkina-Aristova2011
02.09.2021
Пусть h - высота треугольника BCP из вершины P и t - высота треугольника CBQ из вершины Q. Тогда высота ADP равна 3h (т.к. треугольники ADP и BCP подобны с коэффициентом подобия 3), А высота ADQ равна 3t (т.к. треугольники ADQ и CBQ тоже подобны с коэффициентом подобия 3). Значит, с одной стороны, высота трапеции равна 3h-h=2h, а с другой стороны, эта же высота трапеции равна t+3t=4t. Значит, 2h=4t, т.е. h=2t. Таким образом, площадь ADQ равна AD*3t/2=3BC*3t/2=9t*BC/2, площадь BCP равна BC*h/2=BC*2t/2=BC*t. Значит, искомое отношение площадей равно 9/2.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть найменшу сторону ΔABC, якщо AM : MB = 3 : 2 , NC = 15 см, PΔABC = 50 см.
Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).