Sergei248
?>

Основою прямого паралелепіпеда є ромб. Площа бічної поверхні паралелепіпеда дорівнює 10 м2, а площа одного з його діагональних перерізів дорівнює 4 м2. Знайдіть площу другого діагонального перерізу паралелепіпеда.

Геометрия

Ответы

Smirnovav1982422

сделать что-то простое :)

Чтобы найти высоту, надо сначала найти площадь. А чтобы найти площадь, надо найти размеры сторон - и диагоналей тоже. 

Ромб делится диагоналями на четыре равных прямоугольных треугольника. У каждого из них катеты - это половинки диагоналей, а гипотенуза равна боковой стороне. Боковая сторона задана - это 200/4 = 50.

Далее речь идет об этом прямоугольном треугольнике.

Поскольку катеты отностятся как 3:4, то это "египетский" треугольник, то есть треугольник, подобный треугольнику со стронами 3,4,5. Поскольку гипотенуза равна 50, катеты равны 30 и 40.

Технически это можно проделать и "тупым" и не одним :) - можно например так.

Пусть один катет 3*х тогда другой 4*х, тогда

3^2*x^2 + 4^2*x^2 = 50^2;

x^2 = 100; x = 10; катеты 30 и 40.

Площадь такого треугольника 30*40/2 = 600;

Площадь всего ромба в 4 раза больше, то есть 2400;

Площадь равна высоте, умноженной на боковую сторону, то есть высота равна 

2400/50 = 48.

 

Такой вот неприятный случай, простое и очевидное замечание вызвало, мягко говоря, сильное непонимание. Придется кое что объяснить.

Если очень трудно сосчитать площадь АВС (обозначения на рисунке sana2008), как АС*ВО/2 = 60*40/2 = 1200, или на тот случай, когда трудно сосчитать площадь ромба как АС*BD/2 = 2400, то
в этом случае, конечно, надо применить формулу Герона, она очень кстати.

Применяем её для треугольника АВС. АВ =ВС = 50, АС = 60, p = (50+50+60)/2 = 80;

р - ВС = р - АВ = 30

р - АС = 20

S^2 = 80*30*30*20 = (1200)^2

S = 1200
Ну и конечно - графически. Только вот сколько не строй "египетский" треугольник с гипотенузой 50, у него высота все равно 24. А это как раз расстояние от центра ромба до стороны, высота ромба в 2 раза больше. 

Ошибка у sana2008 тривиальная, она почему то использовала АС = 30 и получила неверный результат, хотя отлично знала что АС = 60. Это бывает... но зачем же упрямиться :

inris088

сделать что-то простое :)

Чтобы найти высоту, надо сначала найти площадь. А чтобы найти площадь, надо найти размеры сторон - и диагоналей тоже. 

Ромб делится диагоналями на четыре равных прямоугольных треугольника. У каждого из них катеты - это половинки диагоналей, а гипотенуза равна боковой стороне. Боковая сторона задана - это 200/4 = 50.

Далее речь идет об этом прямоугольном треугольнике.

Поскольку катеты отностятся как 3:4, то это "египетский" треугольник, то есть треугольник, подобный треугольнику со стронами 3,4,5. Поскольку гипотенуза равна 50, катеты равны 30 и 40.

Технически это можно проделать и "тупым" и не одним :) - можно например так.

Пусть один катет 3*х тогда другой 4*х, тогда

3^2*x^2 + 4^2*x^2 = 50^2;

x^2 = 100; x = 10; катеты 30 и 40.

Площадь такого треугольника 30*40/2 = 600;

Площадь всего ромба в 4 раза больше, то есть 2400;

Площадь равна высоте, умноженной на боковую сторону, то есть высота равна 

2400/50 = 48.

 

Такой вот неприятный случай, простое и очевидное замечание вызвало, мягко говоря, сильное непонимание. Придется кое что объяснить.

Если очень трудно сосчитать площадь АВС (обозначения на рисунке sana2008), как АС*ВО/2 = 60*40/2 = 1200, или на тот случай, когда трудно сосчитать площадь ромба как АС*BD/2 = 2400, то
в этом случае, конечно, надо применить формулу Герона, она очень кстати.

Применяем её для треугольника АВС. АВ =ВС = 50, АС = 60, p = (50+50+60)/2 = 80;

р - ВС = р - АВ = 30

р - АС = 20

S^2 = 80*30*30*20 = (1200)^2

S = 1200
Ну и конечно - графически. Только вот сколько не строй "египетский" треугольник с гипотенузой 50, у него высота все равно 24. А это как раз расстояние от центра ромба до стороны, высота ромба в 2 раза больше. 

Ошибка у sana2008 тривиальная, она почему то использовала АС = 30 и получила неверный результат, хотя отлично знала что АС = 60. Это бывает... но зачем же упрямиться :

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Основою прямого паралелепіпеда є ромб. Площа бічної поверхні паралелепіпеда дорівнює 10 м2, а площа одного з його діагональних перерізів дорівнює 4 м2. Знайдіть площу другого діагонального перерізу паралелепіпеда.
Ваше имя (никнейм)*
Email*
Комментарий*