В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Точка T-середина отрезка MP.Найдите координаты точки P, если T(-3;4) и M(-5;7)
В окружности с радиусом 25 расстояние до хорды длины 48 равна 7 (половина хорды, расстояние до хорды и радиус образуют прямоугольный треугольник, в данном случае Пифагоров 7,24,25). Поэтому высота равнобедренного треугольника, заданного в задаче, равна 7 + 25 = 32 (возможен вариант 25 - 7 = 18, то есть возможны два решения). Боковая сторона равна 40 (40^2 = 24^2 + 32^2, проверьте :)) это Пифагорова тройка, кратная 3,4,5), а расстояние до неё вычисляется уже упомянутым обозначим его d,
d^2 = 25^2 - (40/2)^2 = 15^2; d = 15 (и тут 3,4,5:)).
Во втором варианте высота 18, половина основания 24, поэтому боковая сторона 30 (опять 3,4,5!). Растояние до хорды длины 30 вычисляется так
d^2 = 25^2 - 15^2 = 20^2; d= 20. (и здесь 3,4,5, уже четвертый раз, а всего 5 раз встречается Пифагорова тройка :)))
Таким образом, в задаче есть два решения, 15 и 20.