Даны точки С(-1;5;3), D(3;-2;6), Е(7;-1;3), Н(3;6;0).
Доказательством, что ADEH - прямоугольник, будет равенство противоположных сторон и диагоналей.
Расстояние между точками определяем по формул:.
d = √((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²).
АD = √(4² + (-7)² + 3²) = √74 ≈ 8,602325.
DE = √(4² + 1² + (-3)²) = √26 ≈ 5,099019.
EH = √((-4)² + 7² + (-3)²) = √ 74 ≈ 8,602325.
АH = √(4² + 1² + (-3)²) = √26 ≈ 5,099019.
Как видим, стороны попарно равны.
Находим диагонали.
АЕ = √(8² + (-6)² + 0²) = √100 = 10.
DH = √(0² + 8² + (-6 )²) = √100 = 10.
Диагонали тоже равны, доказано.
Поделитесь своими знаниями, ответьте на вопрос:
Решите квадратные неравенства -2x-80
ответ: S ABCD = 168 см², S MNKP = 182 см².
Объяснение:
1. Пусть дан параллелограмм ABCD.
AK - высота, проведённая к основанию DC, равна 12 см.
DC - основание параллелограмма, равное 14 см.
Площадь параллелограмма равна произведению высоты на основание, к которому проведена высота.
⇒ S ABCD = AK · DC = 12 · 14 = 168 см².
2. Пусть дан параллелограмм MNKP.
MP = 14 см, MN = 26 см, ∠PMN = 150°.
MN || PK (по свойству параллелограмма).
∠PMN + ∠MPK = 180°, т.к. односторонние при MN || PK и секущей MP.
⇒ ∠MPK = 180° - 150° = 30°
Проведём из точки M к основанию PK данного параллелограмма высоту MB. Образовался прямоугольный ΔMBP (∠MBP - прямой).
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ MB = 1/2MP = 1/2 · 14 = 7 см.
MN = PK = 26 см (по свойству параллелограмма).
Площадь параллелограмма равна произведению высоты на основание, к которому проведена высота.
⇒ S MNKP = MB · PK = 7 · 26 = 182 см².